Probabilistic Approach to Rock Physics Modeling
نویسنده
چکیده
Rock physics modeling aims to provide a link between rock properties, such as porosity, lithology, and fluid saturation, and elastic attributes, such as velocities or impedances. These models are then used in quantitative seismic interpretation and reservoir characterization. However, most of the geophysical measurements are uncertain; therefore, rock physics equations must be combined with mathematical tools to account for the uncertainty in the data. We combined probability theory with rock physics modeling to make predictions of elastic properties using probability distributions rather than definite values. The method provided analytical solutions of rock physics models in which the input is a random variable whose exact value is unknown but whose probability distribution is known. The probability distribution derived with this approach can be used to quantify the uncertainty in rock physics model predictions and in rock property estimation from seismic attributes. Examples of fluid substitution and rock physics modeling were studied to illustrate the application of the method.
منابع مشابه
Rock physical modeling enhancement in hydrocarbon reservoirs using Choquet fuzzy integral fusion approach
Rock physics models are widely used in hydrocarbon reservoir studies. These models make it possible to simulate a reservoir more accurately and reduce the economic risk of oil and gas exploration. In the current study, two models of Self-Consistent Approximation followed by Gassmann (SCA-G) and Xu-Payne (X-P) were implemented on three wells of a carbonate reservoir in the southwest of Ira...
متن کاملNumerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach
Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Dis...
متن کاملA closer look at rock physics models and their assisted interpretation in seismic exploration
Subsurface rocks and their fluid content along with their architecture affect reflected seismic waves through variations in their travel time, reflection amplitude, and phase within the field of exploration seismology. The combined effects of these factors make subsurface interpretation by using reflection waves very difficult. Therefore, assistance from other subsurface disciplines is needed i...
متن کاملRock physics based facies classification from seismic-inversion results in unconventional reservoirs
The objective of this study is to demonstrate the power of integrating rock physics theory, measurement and simulation to improve facies prediction in an unconventional limestone and shale reservoir. Reliable facies prediction is a challenge in unconventional reservoir characterization because of complex geological heterogeneities. Both deterministic and probabilistic approaches are commonly us...
متن کاملProbabilistic design: The future of rock engineering
A brief background to the development of the rock engineering design process is given, showing that since the development of the science of mathematics, deterministic methods have been used to perform various calculations. The variability of rock properties and support characteristics have always been known. However, they were not explicitly used in design but compensated for by the use of a sa...
متن کامل